Since November 2019, the rapid outbreak of coronavirus disease 2019 (COVID-19) has brought severe threats to the public health worldwide. COVID-19 is caused by a novel SARS-CoV-2 virus and is characterized by respiratory manifestations. Several researchers have highlighted the importance of imaging in COVID-19 diagnostic workup, particularly chest computed tomography (CT). The virus infects the host cell through the angiotensin-converting enzyme 2 (ACE-2) and transmembrane serine protease 2 (TMPRSS2) [1].

Several studies have demonstrated the potential role of noninvasive imaging in COVID-19 diagnosis and management [2]. In a study by Fang et al. [3], CT was highly effective in detecting COVID-19, with a sensitivity of 88.6% compared to 94.3% for reverse transcription polymerase chain reaction (RT-PCR).

The clinical characteristics of COVID-19 include fever, cough, shortness of breath, and fatigue. In a study of 82 patients, 63.75% had positive CT findings, while less than 30% had positive RT-PCR findings [4]. The CT severity score can be beneficial in the evaluation of COVID-19 patients. In this study, the severity score was classified into three categories: score-1 (10-15 area involved), score-2 (15-25 area involved), and score-3 (25-50% area involved).

The lung pathological changes were evaluated according to the Fleischner Society guidelines [5]. The co-occurrence of ground-glass opacity (GGO) and consolidation was noted in 28.57% of patients. A significant difference was observed in the distribution of opacities and involvement of particular lobe or surface in different clinical stages of disease.

In the early stage of the disease, the most prevalent co-morbidity observed was hypertension, cardiovascular and cerebrovascular diseases, and diabetes mellitus. These findings are consistent with prior reports by Liu et al. [6]. The clinical severity of COVID-19 cases was also compared with SARS-CoV and the SARS-CoV-2 virus, which caused SARS and COVID-19, respectively. The effective reproductive number (R) of SARS-CoV-2 was found to be higher than that of SARS-CoV, indicating higher pandemicity [7].

In summary, CT imaging can be a critical tool in the diagnosis and management of COVID-19 patients. The clinical and demographic characteristics of COVID-19 patients need to be further studied to better understand this pandemic disease. Acknowledgments: This study was supported by the National Natural Science Foundation of China (81971780).