Introduction

As association between accelerated atherosclerosis and systemic lupus erythematosus (SLE), typical by the occurrence of a myocardial infarction in a 30 year old woman who had had the disease for more than 10 years was suggested in 1976.1 The same author reported bimodal pattern of mortality in SLE, with early death from active disease and late deaths from cardiovascular disorders. Several subsequent reports have supported an increased cardiovascular risk among SLE patients. This opened up the interest in the new understanding of atherosclerosis and systemic rheumatic diseases.

Though there is a wide spectrum of systemic rheumatic diseases but SLE, Rheumatoid arthritis, antiphospholipid antibody syndrome and systemic sclerosis are the common ones wherein studies on atherosclerotic cardiovascular and cerebrovascular disease are increasingly available. Traditional cardiovascular risk factors, such as hypertension and dyslipidemia are more prevalent in SLE patients and certainly contribute to an increased incidence of cardiovascular disease (CVD).2 However, cohort studies have shown that the increased cardiovascular risk in SLE cannot be explained by traditional risk factors only but disease specific factors contribute significantly as well.3,4,5

The most studied disease in this direction is SLE which is a complex autoimmune prototype multisystem disease characterized by chronic inflammation of virtually every organ including blood vessels. The atherogenic cascade of events and chronic immunoinflammation with autoantibodies are interlinked in systemic rheumatic diseases to contribute premature atherosclerosis.

Evidence for increased incidence of atherosclerotic CVD in SLE

In 2 prospective follow-up studies CVD end points in SLE patients were compared with those in a reference population without SLE. Manji et al6 observed in 498 patients with 6.7 years follow-up that incidence of myocardial infarction (M1) in all age groups of women with SLE with a 7-fold higher incidence in all age groups combined and a particularly increased risk more than 50 fold in women aged 35-44 years. Jonsson et al7 observed myocardial infarction occurred 9 times more frequently in 86 adult patients on a follow-up of 6 years.

In two large hospitalized retrospective studies CVD incidence is 2-4 times more common in SLE patients compared with those of non-SLE patients.8,9 A case control study comparing 8,688 patients with AM1 with 33,923 controls from the General Practice Research Database (GPRD) in UK found
Table I: Mechanism of atherogenic autoantibody interference

<table>
<thead>
<tr>
<th>Autoantibody binding to cell or non-cellular particle lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation of immune system with release of IL-1</td>
</tr>
<tr>
<td>Formation of immune complexes e.g. anti β1GP-1 autoantibody with OxLDL and B2 GP-I</td>
</tr>
<tr>
<td>Induction of clearance e.g. clearance of ApoA1/HDL after binding of anti-APO A1 autoantibody</td>
</tr>
<tr>
<td>Impairment of function e.g. LPL activity after autoantibody binding to LPL</td>
</tr>
<tr>
<td>Signalling pathway activation e.g. endothelial apoptosis following binding of lupus coagulant</td>
</tr>
</tbody>
</table>

that 41 SLE patients in the database to be 2.67 times more likely to have an AMI than their controls after correction for the presence of traditional risk factors. These studies show that in SLE patients CVD risk estimation based on the Framingham Heart Study data underestimates the actual CVD risk and thereby provide further evidence for the presence of disease-specific mechanisms involved in the increased incidence of CVD in SLE. The current evidence indicates that atherosclerosis plays an important role in SLE-related CVD, even in young patients. Histopathologic studies from postmortem SLE patients showed more extensive and severe atherosclerotic lesions at various points of vasculature when compared with non-SLE controls. In addition, endothelial dysfunction and the presence of subclinical atherosclerosis as assessed by US study of carotid arteries, flow-mediated dilatation (FMD) method and electron beam tomography images are demonstrated in heterogeneous SLE patient groups.

Mechanisms of atherosclerosis

Endothelial dysfunction and chronic inflammation initiate and propagate atherosclerosis. The endothelial dysfunction is both structural and functional with impaired capacity to release the vasodilatory, anti-inflammatory and antioxidative nitric oxide. This increases vascular permeability and induces vasoconstriction. In addition, various pathologic stimuli activate the immune system and initiate the release of proinflammatory cytokines. Together with an impaired anti-inflammatory defense of dysfunctional endothelium, this leads to activation and influx of inflammatory cells into the vessel wall.

Atherosclerosis lesions are characterized by presence of large number of inflammatory cells including monocyte/macrophages, mast cells, dendritic cells and T-cells. Infiltrated macrophages form foam cells by engulfing oxidized LDL and constitutes early fatty streak. This leads to plaque development which influences intraplaque inflammation, thrombocyte aggregation, smooth muscle cell and fibroblast proliferation and matrix production. The remodeling of plaque and extent of inflammatory infiltrate determine the plaque stability. Plaque rupture initiates thrombus formation and vessel occlusion.

Role of autoantibody formation

Large number of autoantibody production and binding to proteins or cells can induce the following changes in the immune system. (Table 1)

This has led to unabated proatherogenic pathophysiological changes including dyslipidemia, activation of immune system, with release of mediatory, activation of immune complexes, induction of clearance endothelial cell apoptosis, oxidative stress and possibly a reduction of endothelial progenitor cells. The consequences of combination of traditional risk factors and autoantibody binding results in chronic low-grade inflammatory state and endothelial dysfunction. Ultimately these will potentiate atherosclerotic CVD events in SLE. (Figure 1)

Role of traditional and non-traditional risk factors

Traditional and non-traditional CVD risk factors are known to be more prevalent in SLE patients than in controls. These include the following as
Figure 1: Overview of potential mechanisms underlying the pathophysiology of accelerated cardiovascular disease in systemic lupus erythematosus

Medication effects

Autoimmune responses & dysregulation of inflammation

Traditional risk factors

Oxidative Stress

Endothelial apoptosis

Endothelial progenitor Cells

Inflammatory mediators

Endothelial dysfunction

Inflammatory infiltrate

Atherosclerosis

Cardiovascular event

Table 2: Risk factors for risk factors in SLE-CVD

Traditional risk factors	Non-traditional risk factors
Hypertension | Steroid therapy
Hyper cholesterolemia | Prolifammatonary HDL
Hyper homocysteinemia | Endothelial apoptosis
Low HDL | Anti HSP antibodies
Diabetes mellitus | Increased Ox-LDL
Renal impairment | Increased CIC
Elevated CRP | Elevated inflammatory cytokines
Insulin resitance | Dendritic cell overexpression
Smoking | Decreased endothelial progenitor cells

Several studies in SLE patients that prolonged use of prednisone is associated with atherosclerotic changes although there are some contradictory observation. Roman et al found that more aggressive immunosuppression, including higher doses of prednisone and use of cyclophosphamide or hydroxychloroquin was associated with the absence of plaque.

Traditional risk factors may be influenced by SLE-specific factors. Antiphospholipid antibodies in 30-50% SLE patients adversely affect the lipid profile and induce lipid peroxidation. Autoantibodies are produced against other lipid components like HDL, Apo-A1 and lipoprotein lipase (LPL). All there increase lipid peroxidation and make these lipid components dysfunctional. Hence, HDL is proatherogenic and proinflammatory because of autoantibody binding to HDL/APO-I; anti-LPL antibody correlate with triglyceride levels, disease activity and markers of inflammation.

Endothelial cell apoptosis

Autoantibodies in SLE bind to endothelium to target 60Kd heat shock protein (HSP) and cause endothelial cell apoptosis upon binding of anti HSP 60 antibodies. Similarly lupus anticoagulant and anti-ds DNA antibodies induce endothelial cell apoptosis. Endothelial apoptosis contributes to the loss of endothelial integrity and thereby to the initiation of atherosclerosis. Apoptotic endothelium is also prothrombotic in SLE which is further aggravated by circulating annexin V and plasma tissue factor. Increased endothelial cell apoptosis may represent an important mechanism for the development of both atherosclerosis and thrombosis.
Increased Oxidative stress and impaired oxidant defense

Oxidative stress is increased in SLE because of lipid peroxidation. Plasma levels of Ox-LDL are elevated and correlate with the presence of CVD.27 In addition, Ox-LDL and minimally modified LDL are found immunogenic.28 Autoantibodies against Ox-LDL are elevated in SLE patients and facilitate Ox-LDL uptake by macrophages29 to produce foam cells.

Several antioxidant defenses are impaired in SLE. Diminished HDL levels due to anti-HDL antibodies in SLE is unable to exert antioxidant properties and LDL oxidation and uptake by monocytes remain unabated. High levels of asymmetric dimethyl arginene (ADMA) in SLE patients inhibit nitric oxide production from endothelium to cause endothelial dysfunction and potentiate acute coronary events.30 These high levels of ADMA correlated well with anti-ds DNA.31

Dysregulation of inflammation

In SLE, the major proatherosclerotic pathogenic derangements are proinflammatory state and endothelial dysfunction. The proinflammatory state is characterized by an activated immune system with elevated levels of proinflammatory cytokines and dysregulation of inflammatory cell response.

Levels of inflammatory cytokines are elevated in active and inactive periods of SLE,32 indicating there is chronic low grade inflammation that increases during relapse of disease. Several of these cytokines like IL-6, IK-1, IL-12, IL-18, MCP1, TNF-alfa are proinflammatory and proatherogenic. But IL-10, IL-1 RA are atheroprotective. Patients with SLE have higher plasma levels of adhesion molecule and E-selectin33 which are associated with CVD.34

In atherosclerotic plaque macrophage, dendritic cells, Ox-LDL and HSPS activate T-cells and subsequently stimulate B-cells to produce antibodies. However T-cell activation is inhibited by the HDL component APO A-1 and APO-A1 levels are reduced in SLE patients.35 After T-cell activation, CD 40L remains upregulated and interact with CD40 to facilitate atherogenesis via T-cell independent mechanisms.

Defective endothelial regeneration by endothelial progenitor cells

Endothelial apoptosis is compensated by endothelial repair which is mostly done by endothelial progenitor cells (EPC) from bone marrow. In SLE circulating EPCs are reduced reflecting an impaired capacity for endothelium regeneration which may contribute to accelerated atherosclerosis.36

Increased annexin V binding to the circulating progenitor cells suggested increased apoptosis as the underlying mechanisms of EPC deficiency.36 Consequently with this, SLE serum was found to induce haematopoietic stem cell apoptosis.37,38 Therefore in SLE patients EPC level is chronically low and endothelial cell loss is hardly regenerated with resultant apoptosis.

In rheumatoid arthritis chronic inflammation can promote endothelial cell activation and vascular dysfunction. Predisposition to vascular damage in RA is probably mediated by multiple pathways including inflammatory cytokines,39 acute phase reactants,40 chemokines,41 prothrombotic and adhesion molecules,42 cytotoxic responses,23 insulin resistance,42 Ox-LDL43 and homocysteine.44 This leads to blood vessel damage, endothelial cell apoptosis, decreased nitric oxide, increased platelet aggregation and smooth muscle proliferation, all of which can promote endothelial dysfunction and premature atherosclerosis. Bone marrow response to vascular damage is impaired in RA in which decreased EPC number and abnormal EPC function are found.45 Reduced EPC numbers and abnormal EPC function clearly correlate with increased atherosclerosis, impaired vasculogenesis after ischaemia and predict future cardiovascular events.47,27 The pathogenic mechanisms involved in premature CVD in rheumatoid arthritis are illustrated in Figure 2.47,48
The observed risk factors in RA for premature CVD are age, duration of disease (usually more than 10 years), co-existent hypertension, persistent chronic inflammation and disease severity; these are associated with carotid atherosclerotic plaque formation even before the clinical CVD events.49

Clinical implications

There is substantial evidence that SLE and rheumatoid arthritis patients have a markedly increased risk of atherosclerotic cardiovascular disease by both traditional and non-traditional proatherosclerotic factors. Although several lines of evidence support the idea that auto-antibody formation plays a role in the pathogenesis of the accelerated atherosclerosis, the mechanisms through which this induces a chronic low-grade inflammatory state and endothelial dysfunction are complex and have not been fully elucidated.

SLE and RA patients should be regarded as a population at high risk for the development of CVD, similar for example to patients with diabetes, in whom prompt identification and stringent treatment of CVD risk factors is recommended.50 Guidelines for CVD risk management in SLE patients were recently proposed, targeting mainly the traditional CVD risk factors and centering around life style modifications and the use of traditional drugs such as statins, angiotensin-converting enzyme inhibitors and aspirin.50 Similar preventive strategies for traditional and non-traditional risk factors operate in RA.51,52 Additional emphasis is given to control disease activity with DMARDS and biologicals and to improve endothelial function.53 In the future, selective intervention that target the chronic inflammation, immune dysregulation, endothelial dysfunction and metabolic derangement in the pathophysiology of atherosclerosis will hopefully provide further benefit.

References

27. Bultink IE, Teerlink T, Heijst JA, Dijkman BA, Voskuyl AE. Raised plasma levels of asymmetric dimethylarginine are

Abridged Index

Cardiology
AMI in elderly 728
Antiplatelet drug resistance 105
Bare metal stents 53
Broad QRS tachycardia 783
CAD & Sleep disorders 182
CAD in women 645
Chronic heart failure- diagnosis 590
Drug eluting stents 57
Early metabolic intervention 421
Heart failure 192
Hypertension and obesity 548
Hypertension- changing guidelines 426
Hypertension- Combination therapy 434
Hypertension- endothelial cell dysfunction 32
Hypertension in Type 2 diabetes 439
Newer thrombolytics Vs primary angioplasty 14
Pre-operative cardio-pulmonary assessment 725
Refractory heart failure- devices and surgery 596
Safety of stents 70
STEMI- newer drugs 112
Thrombolysis in AMI 535
Valvular heart disease in pregnancy 653
Young hypertensive- investigation 570

Clinical Pharmacology
Chirality of drugs 178
Drug interactions- mechanisms 674
Probiotics and Prebiotics 258

Critical Care & Emergency Medicine
Bio-terrorism 406
DIC 230
Febrile emergencies 217
Heat stroke 817
Metabolic abnormalities in critically ill 500
Resuscitation- trauma in pregnancy 42
Snake bite- update on management 691
Statins in critical care 491
Wavelet analysis of heart rate variability 142

Endocrinology
Diabetes- mega trials 664
Diabetes prevention 849
Glucagon analogs 459
Incretin hormones 1
Insulin in Type 2 Diabetes 453
Maternal Hypothyroidism & Pregnancy 342
Multinodular thyroid disease 615
Neuropathy in diabetes- management 810
Obesity- experience with sibutramine 540
Obesity- SCOUT trial 544
Oral hypoglycemics- current status 441
Prediabetes- interventions 633
Thyroid disease in India 334
Type II diabetes-profile 94

Gastroenterology
IBD in India 250
IBD-recent advances 264
Hepato-pulmonary syndrome 748
Non-variceal bleed- management 833

Geriatrics
Abdominal pain in elderly 239
Improving longevity 779
Preventive strategies 731

Haematology
Polycythemia- Investigation 358
DVT- Investigation 368

Infections & Tropical Medicine
Enteric fever 201
Antileishmanial resistance 486
Antimalarial drug resistance 477
Chikungunya 205
<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonization Vs infection</td>
<td>330</td>
</tr>
<tr>
<td>Dengue- resurging infection</td>
<td>739</td>
</tr>
<tr>
<td>Leptospirosis in India</td>
<td>799</td>
</tr>
<tr>
<td>Nosocomial Pneumonia</td>
<td>290</td>
</tr>
<tr>
<td>Post-exposure prophylaxis</td>
<td>752</td>
</tr>
<tr>
<td>Tropical chronic pancreatitis</td>
<td>323</td>
</tr>
<tr>
<td>Tropical pyomyositis</td>
<td>697</td>
</tr>
<tr>
<td>Lipidology</td>
<td></td>
</tr>
<tr>
<td>Aggressive lipid lowering</td>
<td>298</td>
</tr>
<tr>
<td>HDL-therapy</td>
<td>313</td>
</tr>
<tr>
<td>Isolated Triglyceridemia</td>
<td>302</td>
</tr>
<tr>
<td>Mixed dyslipidemias</td>
<td>764</td>
</tr>
<tr>
<td>Postprandial lipids- role in atherosclerosis</td>
<td>857</td>
</tr>
<tr>
<td>Nephrology</td>
<td></td>
</tr>
<tr>
<td>Acute renal failure- management</td>
<td>603</td>
</tr>
<tr>
<td>Anemia in CKD</td>
<td>163</td>
</tr>
<tr>
<td>Glomerulonephritis- management</td>
<td>82</td>
</tr>
<tr>
<td>Nephrotoxicity- herbal drugs</td>
<td>150</td>
</tr>
<tr>
<td>Proteinuria- complications</td>
<td>156</td>
</tr>
<tr>
<td>Renal replacement therapy</td>
<td>610</td>
</tr>
<tr>
<td>Neurology</td>
<td></td>
</tr>
<tr>
<td>Acute ischaemic stroke</td>
<td>117</td>
</tr>
<tr>
<td>First seizure- management</td>
<td>246</td>
</tr>
<tr>
<td>Migraine prophylaxis</td>
<td>378</td>
</tr>
<tr>
<td>Parkinson’s Disease- Non motor symptom complex</td>
<td>9</td>
</tr>
<tr>
<td>Refractory Epilepsy- Investigation</td>
<td>578</td>
</tr>
<tr>
<td>Stroke Unit</td>
<td>131</td>
</tr>
<tr>
<td>Thrombolysis in ischemic stroke</td>
<td>519</td>
</tr>
<tr>
<td>TIAs</td>
<td>347</td>
</tr>
<tr>
<td>Oncology</td>
<td></td>
</tr>
<tr>
<td>Infection & cancers</td>
<td>168</td>
</tr>
<tr>
<td>Non Hodgekin's lymphoma- treatment</td>
<td>789</td>
</tr>
<tr>
<td>Solid tumours- targeted therapy</td>
<td>508</td>
</tr>
<tr>
<td>Psychiatry</td>
<td></td>
</tr>
<tr>
<td>Depression- new horizons</td>
<td>404</td>
</tr>
<tr>
<td>Pulmonology</td>
<td></td>
</tr>
<tr>
<td>Bronchial asthma- management</td>
<td>283</td>
</tr>
<tr>
<td>COPD- long term management</td>
<td>271</td>
</tr>
<tr>
<td>COPD- Non invasive ventilation</td>
<td>383</td>
</tr>
<tr>
<td>Hemoptysis with normal X-Ray chest</td>
<td>587</td>
</tr>
<tr>
<td>Lung cancer- recent advances</td>
<td>717</td>
</tr>
<tr>
<td>Pulmonary embolism- thrombolysis</td>
<td>529</td>
</tr>
<tr>
<td>Solitary pulmonary nodule- investigation</td>
<td>824</td>
</tr>
<tr>
<td>Rheumatology</td>
<td></td>
</tr>
<tr>
<td>Ankylosing spondylitis- management</td>
<td>472</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>882</td>
</tr>
<tr>
<td>Monoarthritis- Investigation</td>
<td>374</td>
</tr>
<tr>
<td>Osteoporosis-recent advances</td>
<td>628</td>
</tr>
<tr>
<td>Rheumatoid arthritis- disease control</td>
<td>466</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>76</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Amyloidosis- recent advances</td>
<td>391</td>
</tr>
<tr>
<td>Communication skills</td>
<td>557</td>
</tr>
<tr>
<td>Communication with angry patient</td>
<td>845</td>
</tr>
<tr>
<td>Diagnostic reasoning- Baye's theorem</td>
<td>563</td>
</tr>
<tr>
<td>Digital Gangrene</td>
<td>863</td>
</tr>
<tr>
<td>Evidence based medicine- Update</td>
<td>21</td>
</tr>
<tr>
<td>Global warming- health hazards</td>
<td>703</td>
</tr>
<tr>
<td>Medical Errors</td>
<td>873</td>
</tr>
<tr>
<td>Meditation- clinical apllication</td>
<td>712</td>
</tr>
<tr>
<td>Stem cell plasticity</td>
<td>770</td>
</tr>
</tbody>
</table>